«Гарда NDR» противостоит сложно детектируемым сетевым угрозам
Группа компаний «Гарда» обновила систему NDR, предназначенную для выявления и предотвращения кибератак. Теперь заказчики имеют возможность предотвращать сложно детектируемые сетевые атаки. С помощью моделей машинного обучения на основе технологии автокорреляции «Гарда NDR» выявляет аномалии в сетевом трафике и определяет обращения к центрам управления ботнетами. Об этом CNews сообщили представители ГК «Гарда».
«Гарда NDR» – система выявления и предотвращения кибератак, расследования сетевых инцидентов, защиты сети от проникновения с возможностью записи и хранения всех сетевых потоков.
Эксперты группы компаний «Гарда» добавили в перечень инструментов системы NDR модель машинного обучения для выявления обращений к центрам управления ботнетов (Command&Control Center, С&C2) с поддержкой автокорреляции.
Технология позволяет выявлять повторяющиеся последовательности из нескольких уникальных запросов ботов к их центрам управления. Система выявляет скрытые зависимости в сетевом трафике, более точно определяет аномалии, которые указывают на присутствие ботов и их активность в сети. В результате, «Гарда NDR» применима для противодействия даже сложно детектируемым сетевым угрозам.
Модель устойчива к шифрованию и поддерживает детектирование даже при использовании туннелей DNS-over-HTTPs3.
«В 2021 мы выпустили первую версию поведенческих ML-моделей (моделей машинного обучения) и приняли стратегическое решение развивать несигнатурные методы выявления угроз и аномалий, которые являются ключевым элементом функциональности для NTA4/NDR-решений, – отметил руководитель разработки продукта «Гарда NDR» Павел Шубин. – С того момента ML-модели «Гарда NDR» существенно эволюционировали, сейчас они способны выявлять даже неочевидные отклонения поведения устройств и пользователей, которые нельзя определить другими методами. Поведенческие модели (профилирование) с учетом постоянно возрастающей сложности атак по-прежнему остаются наиболее действенным инструментом их детектирования».
«Сейчас мы ясно пониманием, что российский подход к NTA-решениям, основанный на сочетании IDS5 и DPI6, устарел и не отвечает задачам рынка и актуальному ландшафту угроз. Мы постоянно совершенствуем ML-модели и выпустили новую модель для детектирования обращений к C&C, которая позволяет детектировать маскирующиеся последовательности из нескольких уникальных "отстуков"», – сказал руководитель продукта «Гарда NDR» Станислав Грибанов.